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ABSTRACT

We have shown recently that, when certain quite general conditions are satisfied, the set of local minima in the optical
merit function space forms a network where they are all connected through optimization paths generated from saddle
points having a Morse index of 1. A new global optimization method, that makes use of this linking network to
systematically detect all minima, is presented. The central component of this new method, the algorithm for saddle
point detection, is described in detail and we show that the initialization of this algorithm has a significant impact on the
performance. For a simple global optimization search (Cooke triplet) several representation forms of the network of the
corresponding set of local minima are presented. These representations, which can be visualized in two dimensions, are
independent of the dimensionality of the design space so that they can provide insight into the topography of merit
function landscapes of arbitrary dimensionality.
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1. INTRODUCTION

Present day optical design software makes use of powerful global optimization algorithms1,2,3,4. Unfortunately, the
minima detected with such algorithms are given only as isolated points in the parameter space without any information
about the topography of the merit function space between them. Recently, we have shown that optimization paths
generated from a special type of saddle points (saddle points having a Morse index of 1) connect all minima in the
optical merit function space5.

In this paper, we give additional details about the method used to detect the saddle points. We also introduce several
representation forms for the topography of the network structure of merit function spaces of arbitrary dimensions. These
representation forms can be used to visualize the relationship between the minima while ignoring issues such as the
dimensionality or local characteristics of the merit function space. These networks can become an important tool for the
study of complex design problems encountered in optics.

In section 2 it is shown that the relationship between the various minima can be derived only by considering the
equimagnitude surfaces around minima and saddle points having a Morse index of one. In Section 3 we describe a new
method for global optimization based on the detection of the network of minima. This method makes use of the network
structure to systematically find all minima and saddle points having a Morse index of 1. The detection of saddle points
which forms the central component of our method is discussed in section 4. We will show that saddle points having a
Morse index of 1 can be detected by using only the local optimization engine of optical design software. We also show
that the initialization of such an algorithm has a significant impact on the efficiency of the algorithm. In section 5,
several representation forms of the networks of minima are introduced. These representations can be used as tools for
the analysis of the topography of merit function spaces of arbitrary dimensions.
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2. CONNECTED NETWORKS OF MINIMA

We consider an optimization problem with continuous variables and assume a continuous merit function f that is
bounded from below. (In optics, a merit function that is defined as a sum of squares satisfies this requirement.) A point
in the solution space is described by a vector x=(x1,x2,…,xN) whose components are the N optimization variables. For
our current discussion, the equimagnitude surfaces in a small neighborhood around the critical points of f are of
particular interest. At a critical point, the gradient of f vanishes and the equimagnitude surfaces may be written as

constxxA jiij =� ˆˆ (1)

where the circumflex denotes the values of the optimization variables in a translated coordinate system that has its
origin at the critical point, and where A is the matrix of second-order derivatives computed at the critical point
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As known from linear algebra, the coordinate system can be rotated in such a way that the quadratic form on the left-
hand side of Eq. (1) contains only squares of the variables in the new coordinate system x . The equimagnitude surfaces
around the critical point are then given by
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where the new coordinates are measured along the eigenvectors of the matrix A and the factors λ are the eigenvalues
corresponding to these eigenvectors. As A is a square symmetric matrix, the eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are mutually orthogonal.

Assuming that all eigenvalues are non-zero, the Morse index (MI) of a critical point is defined as the number of
negative eigenvalues in Eq. (3). A negative eigenvalue means that along the direction of the corresponding eigenvector
the critical point is a maximum. Thus local minima have MI=0 (all eigenvalues are positive so that there do not exist
ascending directions at such a point) whereas local maxima have MI=N. Critical points having a Morse index between 1
and N-1 are referred to as saddle points. Equimagnitude surfaces around a saddle point with MI=1 consist of one surface
for merit function values higher than that of the saddle point while they consist of two separated surfaces for
equimagnitude values lower than that of the saddle point (see Fig. 1).

Figure 1 Typical behavior around a saddle point having a Morse index of one. The merit function value at the saddle point is fsp.
a) for f<fsp, we have two surfaces. b) for f=fsp the two surfaces only touch at the saddle point and encircle the surfaces
drawn in a). c) for f>fsp one surface encircles the saddle point and all other surfaces with smaller equimagnitude values.
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Consider now the merit function landscape shown in Fig 2. First note that the surface with merit function value f=fa

encircles the complete set of minima. However, Eq. (3) predicts that the equimagnitude surfaces around each minimum
are ellipsoids that eventually reduce to a single point at the minimum they encircle. For a continuous merit function
space, the encircling surface will thus be split in a series of equimagnitude surfaces that each ultimately encircle only
one minimum. We will show that the splitting of one encircling surface into two separated surfaces occurs at saddle
points having a Morse index of 1.
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Figure 2 Three local minima (M1, M2 and M3) can be distinguished that are each encircled by a number of equimagnitude surfaces.
The merit function values at the three minima are lower than those of the encircling equimagnitude surfaces with
fd<fc<fb<fa. The two surfaces with merit function value fc can be connected through optimization paths (dashed lines)
generated from the point S1. Similarly, the fd surfaces are connected through paths from S2. In the enlarged detail around
the point S1, light gray indicates lower and dark gray indicates higher values of the merit function.

In Fig. 2, the equimagnitude surface with f=fb is the smallest surface that still encircles the complete set of minima. For
lower values, e.g. f=fc, we have two separated equimagnitude surfaces that each encircle a sub-set of the total number of
minima. If we now consider a surface with a merit function value f=fb’ slightly lower than fb, the corresponding surface
is split. Let BB’ be the two points on the separated parts of the equimagnitude surface for which the length of the
segment BB’ is minimal. Obviously along BB’, the point S1 is a maximum. A surface with a value fa’ slightly higher
than fb encircles the surface with value fb. For any line perpendicular to BB’ and passing through S1 we then have a
minimum at S1. Since this is valid for any choice of AA’ in the hyperplane orthogonal to BB’, S1 is a saddle point
having a Morse index of 1. At S1, we can now perform two local optimizations. A local optimization initiated on the left
side of S1 then converges to M1 while a local optimization initiated on the right side of S1 converges to one of the
minima encircled by the equimagnitude surface containing M2 and M3. (For the merit function landscape in Fig. 2, the
optimization will most likely converge towards M2.) Hence, the optimization paths from saddle point S1 connect two
distinct minima. For similar reasons, the point S2 is also a saddle point having a Morse index of 1 and this saddle point
connects M2 with M3. The set of minima inside an encircling surface are thus connected through optimization paths
generated from the saddle points having a Morse index of 1.

It is important to note that this linking network is independent of the exact shape of the equimagnitude surfaces and the
dimensionality of the merit function space. From a topological point of view, two surfaces are considered equivalent if
there exists a continuous deformation that transforms one surface into the other one. Therefore, the network of minima
represents changes in the topology of the merit function landscape. However, we only consider topological changes for
which the equimagnitude surfaces are split for decreasing merit function values (saddle points with MI=1) and
topological changes for which equimagnitude surfaces vanish (local minima). Other topological changes, which might
be of interest for other purposes, occur at critical points having a Morse index higher than 1.



3. GLOBAL OPTIMIZATION

As shown in the previous section, the local minima within an encircling equimagnitude surface6 are all connected
through optimization paths generated from the saddle points that have a Morse index of 1. Starting form such a saddle
point, two distinct local minima can be obtained by means of local optimization only. By detecting the saddle points
that connect a given minimum with the remainder of the network, we can systematically detect the complete network of
minima. Once the complete network has been detected, not only the global minimum is known but also the relation
between the various minima. A basic algorithm for the detection of the complete network of minima is presented in
Fig. 3. Algorithms for finding new local minima based on saddle point detection that have some similarities with our
method can be found in papers by Barkema and Mousseau7-9 and by D. Wales10-11 where the energy landscape of many
atoms is studied.
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Figure 3 Flow chart for saddle point based global optimization.

The procedure for global optimization presented in Fig. 3 is essentially different from other global optimization
strategies as the search for the global minimum is now split in two distinct stages: a local minimization from saddle
points and a local saddle point search from minima (i.e. a search for the saddle points connected to the given minimum).
Ideally, repeated use of these two stages would find all Morse index one saddle points and all minima. We thus try to
find all minima in a structured manner where we only consider direct connections between minima and saddle points.
For a given minimum, we only need to detect those saddle points for which the optimization paths lead towards that
minimum. Other saddle points can then be located from the other minima. In Fig. 2 it is thus not required to find S2

while using M1 as initial point for the saddle point detection. It is sufficient to find S1 so that the local optimization from
S1 results into the location of M2. However, while initiating a search from M2, it is required to find both S1 and S2. In
addition to finding the complete set of minima, such a search also provides additional insight into the topography of the
merit function space as will be shown in section 5.



4. SADDLE POINT DETECTION

Although we may safely ignore saddle points having a Morse index higher than one, detecting all saddle points that
connect a given minimum to the rest of the network remains a challenging task. Due to the high dimensionality of the
optical merit function space and the non-analytical form of the merit function, methods that require the frequent
computation and inversion of the Hessian matrix are not well suited, as they are too intensive computationally.
Furthermore, the frequent usage of constraints in optics requires an algorithm for saddle point detection that is capable
of efficiently dealing with (in-) equality constraints.

We have developed an algorithm for saddle point detection that is based on constrained local optimization. Consider
first an initial point x0 which can be a minimum or a Morse index one saddle point. A new coordinate system x̂ is now
defined with this initial point in the origin. We also choose a direction s and consider the set of hyperplanes orthogonal
to s

txsxsxs NN =+++ ˆ...ˆˆ 2211
(4)

where t gives the distance between the hyperplane and the initial point x0 measured along the normal that passes
through x0. For a given value of t we can then compute the constrained minimum of f in the set of hyperplanes given by
Eq.4. For an appropriate choice of s, these constrained minima form a continuous path connecting the saddle point with
the minimum as shown in Fig. 4. Let xs(t) and Fs(t) be the position vector and the value of f corresponding to a
constrained minimum in a hyperplane defined by Eq.(4). Then the points on a given trajectory are uniquely defined by
the requirement that the gradient of f is parallel to s for all xs(t).

Consider now a trajectory xs(t) generated with a minimum as initial point. For any choice of s we have a minimum at
Fs(0) while a gradual increase of t then results into an increase of Fs(t). A neighboring saddle point is detected when
Fs(t) reaches a maximum and xs(t) is continuous for 0<t<tmax where tmax is the distance corresponding to the maximum
of Fs(t). This procedure is illustrated in Fig. 5 where the hyperplanes are shifted into an arbitrary direction.
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Figure 4 Paths between a local minimum and a saddle point
generated by means of a constrained local
minimization orthogonal to a direction s. Each of these
paths is defined with a different search direction. Due
to the local minimization orthogonal to s, the gradient
direction is parallel to s for all points on a given path.
The arrows indicate the direction of the gradient for
some points on the paths.
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Figure 5 Saddle point detection by using constrained local
minimization. Starting at a local minimum Fs(t)
increases until it reaches a maximum at a saddle
point. Although xs(t) may be a complicated trajectory
through the design space, the saddle point detection is
now effectively a one dimensional maximization
problem for Fs(t).



At a minimum, any direction s leads initially to an increase of Fs. However, a saddle point can only be reached if s is
such that the saddle point is a maximum into the direction of s while it is a minimum orthogonal to that direction. For a
saddle point with a given Hessian matrix A the search is successful and xs(t) passes through the saddle point only if

� < 0jiij ssA (5)

If this condition is not met, the path becomes discontinuous and does not lead to a neighboring saddle point. However,
new local minima (situated further away in the network) can still be discovered in this way.

One of the most important aspects for successful saddle point detection is a proper initialization of the algorithm. The
number of searches performed at each minimum has to be determined as well as the search directions. We will show
that choosing search directions randomly is not an optimal solution because the resulting trajectories will be initially
concentrated in a narrow cone around the eigenvector with smallest eigenvalue. We first discuss the appropriate choice
of search directions and after that, the required number of searches will be considered.

Without prior knowledge of the location of the connecting saddle points, any direction of search may be defined for
starting the search at a minimum. However, by initiating multiple searches from a given minimum, we want to explore
different regions of the merit function space. The probability of detecting all connecting saddle points can then be
maximized by generating paths with a maximum spatial separation. To study the spatial separation between paths
generated with different directions of search, we consider the quadratic region around a minimum where the
equimagnitude surfaces may be approximated by ellipsoids. In this region, the behavior of the merit function is
completely determined by the Hessian matrix at the minimum. For a given Hessian, A, the gradient is then given by

x∆x∆xxM Λ==+∇ Af )( (6)

where the diagonal matrix Λ contains the eigenvalues of the Hessian matrix and the components of the vector x are
measured along the directions of the eigenvectors of the Hessian matrix.

The minimization orthogonal to s ensures that all points on a path generated with a given direction of search have a
gradient direction given by s. Hence, these points are given by

sxs
1)()( −Λγ= tt (7)

where γ is a scaling factor depending on the distance, t as defined in Eq.(4). In the eigenvector basis, the components of
the path vector are then given by

Nisttx iiis ...1,)()( 1

, =λγ= − (8)

Note that when some eigenvalue is very small, the component of the path vector along the corresponding eigenvector
tends to be much larger than the other components.

In the two-dimensional example shown in Fig. 6, a search direction s is defined with an angle α with respect to the first
eigenvector, i.e. the eigenvector with smallest eigenvalue. The corresponding search path xs(t) is now given by Eq.(7)
and this path makes an angle θ with respect to the first eigenvector.

With these definitions we have
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Figure 6 Path xs(t) generated with an arbitrary direction s. The
angles α and θ are defined with respect to the
eigenvector with smallest eigenvalue (the longest axis
of the ellipse).

Figure 7 Paths generated for a set of directions s defined with an
angular separation of 30 degrees between them. The
arrows indicate the direction of search. Note that most
paths are concentrated around the eigenvector with
smallest eigenvalue.

It follows then from Eq.(8) that the two angles are related through
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where λ1 and λ2 are the eigenvalues of the Hessian matrix at the local minimum. It follows from Eq. (10) that for very
elongated ellipsoids (i.e. λ1<<λ2) most paths tend to concentrate in a narrow cone around the eigenvector with smallest
eigenvalue (see Fig. 7). However, we can use the direction of the second eigenvector of the Hessian matrix (thick
horizontal arrow) to escape from the narrow cone around the first eigenvector in order to explore different regions of the
merit function space. For each eigenvector two searches in opposite directions can be performed so that we have a total
number of four independent searches in two dimensions.

In general it follows from Eq(8) that by defining the search directions such that they correspond with the directions of
different eigenvectors of the Hessian matrix the paths are independent of the eigenvalues of the Hessian matrix. The
paths then initially follow the directions of the eigenvectors and they are mutually orthogonal. In the case of an N-
dimensional design space, we can thus define N directions of search corresponding with the directions of the
eigenvectors. For each of the eigenvectors, the search can be performed in opposite directions so that the total number
of searches is given by 2N. The directions of the eigenvectors at a minimum can be determined by means of local
optimization5.

Although a number of only 2N searches might seem insufficient when compared to the number of saddle points that can
be encountered in a typical design problem, it should be realized that these 2N searches are performed at each
minimum. As noted earlier, at each of these minima, only those saddle points having a direct linkage with the minimum
need to be detected. According to our current experience, most saddle points have been detected several times
indicating that 2N searches are sufficient. If more than 2N searches are desired, Eq. (8) can also be used to maximize



the separation between these paths by taking into account the eigenvalues at a minimum. However, for more complex
optimization problems, it might be more efficient to use less than 2N search directions. As the main difference between
the Hessian matrix at a minimum and at a saddle point with a Morse index of 1 is the sign of one of the eigenvalues, it
might be sufficient to use only those eigenvectors for which the eigenvalues are relatively low as we can expect that
those eigenvectors have a higher probability of becoming negative.

5. RESULTS

We have implemented the algorithm described in the preceding sections in the macro language of the commercial
optical design program Code V. Here, we present several results obtained for merit function spaces of triplets. In our
first example the triplet forms an image of an object at infinity and we have used the first five curvatures as variables.
The image plane was placed at its paraxial position and the curvature of the last surface has been solved to keep a
constant effective focal length. The default Code V merit function (which is based on transverse ray aberrations) was
used. The resulting network, which is presented in Fig. 8, consists of 18 local minima and 20 saddle points. In this
network, each node represents a point in the five-dimensional design space and the lines connecting nodes represent
optimization paths that have been generated from the saddle points. As expected, the local minima form a network
where they are all linked through optimization paths generated from the saddle points. This network, which has been
detected in five dimensions, can be visualized in a two-dimensional graph. This allows us to examine the relationship
between the various minima independently of the dimensionality of the merit function space.

The network represented in Fig. 8 has an excess of saddle points as only 17 saddle points are required to form a network
where all 18 minima are connected. For example, the saddle point having a merit function value of 54390 can be
removed without disconnecting the network11. By removing all such superfluous saddle points, we obtain the
“essential” topography of the merit function space as presented in Fig. 9. The acyclic network thus formed shows the
minimum barriers in merit function value that needs to be overcome in order to move from one minimum to another
one. From Fig. 9 we can also derive a binary-tree representation where the splitting of the equimagnitude surfaces is
represented (Fig. 10). This binary tree can be used to visualize how the equimagnitude surfaces split as a function of
decreasing merit function values. Such a representation is less sensitive to the type of local optimization algorithm used
to generate the paths from the saddle points towards the minima.

Even in the case of a constrained merit function space, we can apply our algorithm to detect the network of minima. For
instance, we have added an additional constraint such that the curvature of the fifth surface is larger than zero. The
corresponding network of minima is presented in Fig. 11 and this network shows a remarkable similarity with the
network presented in Fig. 9. Those parts of the network for which the constraints have not been violated are identical.
However, saddle points and minima are now also found on the constraint while other parts of the unconstrained network
do not exist anymore.

Our current experience has shown that the searches into the direction of the eigenvector with smallest eigenvalue find
slightly less than 50% of the saddle points. To find all saddle points, the eigenvectors with higher eigenvalues are also
important. In the searches for the unconstrained Cooke triplet, the different eigenvalues of the Hessian matrix at a
minimum can differ significantly. For one of the minima, the highest eigenvalue was approximately 25,000 times higher
than the lowest eigenvalue of the Hessian matrix. Mostly, the ratio between the highest and lowest eigenvalue at a
minimum ranges between 500 and 6000 so that the initialization of the algorithm for saddle point detection is extremely
important in optics.
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Figure 8 Network of the global search corresponding to the Cooke triplet. The nodes represent optical systems corresponding to the
saddle points and local minima. Nodes are connected through optimization paths generated from the saddle points.
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Figure 9 Essential network of the global search corresponding
to the Cooke triplet. The minimum barrier in merit
function value that needs to be overcome in order to
move from one minimum to another one is determined
by the saddle point with highest merit function value
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Figure 10Tree structure of the global search corresponding to
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CONCLUSIONS

We have shown that the local minima in the optical merit function space form a network where they are all linked
through optimization paths generated from saddle points having a Morse index of 1. This feature has encouraged us to
develop a new type of global optimization that can be applied to systematically approach the problem of detecting
multiple minima. We have also shown that the Morse index 1 saddle points can be detected by a constrained local
optimization. Arbitrary search paths generated with our algorithm for saddle point detection tend to concentrate in a
narrow cone around the eigenvector with smallest eigenvalue while search paths generated into the directions of the
eigenvectors are mutually orthogonal so that a maximum spatial separation between the search paths can be obtained.
Due to the use of local optimization for the saddle point detection, we have been able to include constraints in the
optimization problem.

For a relatively simple global optimization problem, the network of minima has been detected and two presentation
forms of this network where introduced. These representations allow a comprehensible view of the relationship between
the various minima without having to deal with aspects such as the dimensionality of the optimization problem. These
networks could thus be of use for the analyses of complex optical design problems.
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