
Network structure of the set of local minima
in optical system optimization

Florian Bociort*, Eco van Driel, Alexander Serebriakov

Optics Research Group, Delft University of Technology
Lorentzweg 1, NL - 2628 CJ Delft, The Netherlands

ABSTRACT

We discuss a surprising new feature of the merit function landscape in optical system design. When certain conditions
are satisfied, the set of local minima forms a network in which all nodes are connected. Each link between two
neighboring minima contains a special type of saddle point (more precisely, a saddle point having a Morse index 1). On
this basis, a new global optimization method that takes advantage of this feature is proposed. The central component of
the new method, the algorithm for saddle point detection, works in a parameter space of arbitrary dimensionality, and
uses only the local optimization engine of the optical design program. For a simple global optimization search (the
symmetric Cooke triplet) the network of the corresponding set of local minima is presented.
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1. INTRODUCTION

The presence of multiple local minima during optimization is one of the major challenges in optical system design, as
well as in many other fields. Over the past decades, the considerable amount of effort spent for developing and
improving global optimization methods has resulted in a very large number of publications, both in mathematical
literature (for an overview see e.g. Ref. 1) and in literature dedicated to specific types of applications. Successful
algorithms such as simulated annealing2, global synthesis3, genetic algorithms4, or the escape function method5, are
implemented in commercial optical design programs and have a major impact on modern optical design methodology.
A limitation of present-day global optimization methods is however that local minima are given only as isolated points
in the parameter space of the system, with no (or very little) information about the merit function topography around the
individual local minima or in the space between them.

In this paper we show that, when certain quite general conditions are satisfied, the merit function landscape has a
remarkable property, which we could not find mentioned in earlier literature. The local minima form then a network in
which all nodes are connected via links that contain a special type of saddle point. It is known for several decades that a
way to find a new local minimum is to identify a saddle point on the boundary of its region of attraction6,7. As shown in
Section 2 however, not all saddle points are equally important: for finding new local minima it is sufficient to detect
only the saddle points that have a Morse index of 1. In Section 3 we describe our first attempt to develop a new type of
global optimization based on this network structure. We will show that the links between nodes can be found with an
algorithm that uses only the local optimization engine of optical design software. In Section 4 we present as an example
the network corresponding to the symmetric Cooke triplet global search.
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2. CONNECTED NETWORKS OF LOCAL MINIMA

In this paper we consider for simplicity a global optimization problem with continuous variables, having no constraints
or only equality constraints (the case of inequality constraints will be discussed in a future paper), and assume a merit
function of the form

( ) ( )( )2

i i i

i

w a a
f

w

−
= �

�

x
x

�

(1)

where ai are image defects computed with ray tracing, wi the corresponding weights and the tilde denotes the target
values for the corresponding ai. A point in the solution space is described by the vector x = (x
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components are the N optimization variables. The critical points in the N-dimensional solution space are those points for
which the gradient of f vanishes
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In this section we will focus on the behavior of the equimagnitude surfaces of f, which are N-1 dimensional
hypersurfaces in the solution space along which f is constant. In a small neighborhood around a critical point, the
equimagnitude surfaces are given by

ˆ ˆij i jA x x const=� (3)

where the circumflex denotes the values of the optimization variables in a translated coordinate system that has its
origin at the critical point, and where A is the matrix of the second-order derivatives, computed at the critical point
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As known from linear algebra, the coodinate system can be rotated in such a way that the quadratic form on the left-
hand side of Eq.(3) contains only squares of the variables (denoted below by a bar) in the new coordinate system. The
equimagnitude surfaces around the critical point now become

2
i ix constλ =� (5)

The axes of the new coordinate system are then oriented along the eigenvectors of A, and the factors λi in Eq.(5) are the
corresponding eigenvalues. (See Fig.1.) The way to perform this rotation of the coordinate system will be discussed in
more detail in the next section.

Assuming that all eigenvalues are nonzero, the Morse index (MI) of the critical point is defined as the number of
negative eigenvalues in Eq.(5)8. A negative eigenvalue means that along the direction defined by the corresponding
eigenvector the critical point is a maximum. Thus, local minima have MI=0 (all eigenvalues are positive), i.e. they are
minima in all directions, whereas local maxima have MI=N. As shown in Fig. 1, in both cases the equimagnitude
surfaces around these points are ellipsoids with axes oriented along the eigenvectors. For saddle points, the Morse index
has values between 1 and N-1. Figure 2 shows the merit function in the neighborhood of a two-dimensional saddle point
and the enlarged detail of Fig. 3 shows the corresponding equimagnitude contours. Close to the saddle point, these
contours are hyperbolas, whereas for the value of the merit function corresponding to the saddle point itself the
equimagnitude contours degenerate into a pair of straight lines (the asymptotes of the hyperbolas).



As will be shown below, if we are interested in the detection of local minima in a solution space with N>1, the saddle
points with MI=1, which are maxima in one direction and minima in N-1 directions, play a special role. Note first that
equimagnitude surfaces having some value f=f0 of the merit function encircle regions in the solution space for which
f<f0 . If for instance f0 is the merit function of a local minimum then the equimagnitude surface (or the part of it situated
near the minimum) reduces to one point, the minimum itself. For slightly larger values of f0 (a part of) the
equimagnitude surface encircles a small ellipsoidal region around the local minimum. If the value of f0 continues to
increase then the encircled volume also increases.

We will now show in an intuitive way that the local minima within an arbitrary equimagnitude surface form a connected
network, i.e. that there is a well-defined path from any local minimum to any other local minimum in the solution space.
Consider first the situation shown in Fig. 3, two local minima in an N-dimensional solution space. We assume the
existence of a surface with f0 = fa that encircles both minima (the thick dashed curve). Then, for a sufficiently small
value f0 = fb < fa (for instance for fb slightly larger than the largest of the two merit function values corresponding to the
local minima) the equimagnitude surface consists of two separate parts (the thick dotted curves), whereas for f0 = fa we
have only one encircling surface (thick dashed). Assuming that the merit function landscape is free of pathologies, for
some value fS with fb < fS < fa we will encounter the limiting case when the two separate parts of the encircling surface
will touch each other in one point S. We now show that the split point S is in fact a saddle point with MI=1. If we
consider a value of the merit function fB = fB' slightly lower than fS , the corresponding equimagnitude surface will be
split. Let then B and B' be the two points on the separate parts of the equimagnitude surface for which the length of the
segment BB' is minimal. (See enlarged detail in Fig. 3.) Obviously, along the line BB' the split point S is a maximum.
We now consider an equimagnitude surface with a merit function fA = fA' slightly larger than fS . Since this
equimagnitude surface encircles the one with f0 = fS, any line perpendicular to BB' and passing through S will intersect it
in two points, denoted by A and A' in Fig. 3. Along AA' the point S is then a minimum. Since this is valid for any
choice of the line AA' in a N-1 dimensional hyperplane orthogonal to BB', S is a minimum in N-1 directions, and is thus
a saddle point with MI=1. If we now chose the points B and B' as starting points, local optimization will generate two
paths in the solution space that will lead to the two minima. Together with the saddle point, these two paths form the
link between the two local minima.

Assume now that we have an equimagnitude surface with some (large) value of f0 =fa that encircles an arbitrary number
p of local minima. (In Fig 4. where p=3, this is the outermost contour.) If we decrease f0, at some value fS1 < fa the
encircling surface will split into two surfaces that will now encircle p1 and p-p1 local minima, respectively. (In Fig 4.
we have p1=1.) Using the same reasoning as above, it can be seen that the point S1 in Fig. 4 is also a saddle point with
MI=1. By starting local optimizations at a pair of points obtained be slightly perturbing the saddle point on both sides
along the eigenvector with negative eigenvalue, we obtain a link between one local minimum in the group of p1

encircled local minima, and one in the group of p-p1 local minima. By further decreasing f0, we obtain successive splits
of the encircling surfaces. Each such split generates an additional link between two local minima situated in the two
different groups resulting from the split. When f0 has reached a value that is lower than the merit function of the lowest
MI=1 saddle point (S2 in Fig.4) all local minima encircled by the equimagnitude surface with f0 =fa are linked together
in a network via links that contain each a MI=1 saddle point.

We have thus shown that the local minima encircled by an arbitrary equimagnitude surface form a connected network9.
For our purposes, it is important to know whether in typical situations occurring during optical system optimization we
can always find such equimagnitude surfaces that encircle all (useful) local minima. At the time of this writing, we have
examined only a limited number of situations and further research is certainly necessary. Our present results make us
believe however that either this desirable property of the landscape of the merit function (1) is satisfied automatically,
or that it can be achieved by modifying the optimization problem adequately. It is well known to optical designers that
outside some useful regions in the solution space the optical system configurations tend to suffer from ray failure
because some rays either miss surfaces or suffer from total internal reflection. Close to ray-failure situations, the
incidence angles of those rays at the critical surfaces are large, therefore the aberrations and the merit function (1) of the
given optical system configuration tend to be large. Therefore, close to the ray failure borders we can expect in the
solution space equimagnitude surfaces having a large value of the merit function. The local minima encircled by these
surfaces form then a network. The possibility of enforcing the desirable properties of the merit function landscape when
these properties are not automatically satisfied will be discussed in a future paper.
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Figure 1. In a small neighborhood around a local
minimum or maximum, the equimagnitude surfaces
are ellipsoids having their axes oriented along the
eigenvectors of the matrix A.

Figure 2. In a two-dimensional solution space, all
saddle points have MI=1. At the saddle point, the
merit function has a minimum in one direction and a
maximum in the direction perpendicular to the first
one.

1M
S

2M

S

A ′

A

B B ′

Figure 3. Two local minima and a saddle point. In the enlarged
detail, light gray indicates lower and dark gray indicates higher
values of the merit function.
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Figure 4. Several local minima and the saddle points between
them. Figures 3 and 4 are two-dimensional cuts through the 5-
dimensional merit function landscape of a Cooke triplet global
search. (See Sec. 4.)



3. GLOBAL OPTIMIZATION BASED ON SADDLE-POINT DETECTION

A first practical utility of the network structure discussed in the previous section is for global optimization. This
generally very difficult task can now be divided in three separate steps:

i) for a given local minimum, detect the MI=1 saddle points that connect it with the neighboring local minima,

ii) starting from some arbitrary local minimum, find the rest of the network and

iii) when the network is known, select the best solution(s) or identify entire branches along which the imaging
performances of the nodes are satisfactory.

In this section, we will briefly discuss our first attempt to develop a global optimization method based on this strategy.
Additional details will be given in a subsequent paper. In what follows we will focus on the first step, the saddle point
detection. Fortunately, we have to detect only the saddle points with MI=1, while those with a higher Morse index,
which are more difficult to detect, can be safely ignored for the present purpose. For shortness, in the rest of this paper a
MI=1 saddle point will be referred to as a "saddle point".

The first step of the detection process is to compute for the given local minimum the eigenvectors of the matrix A given
by Eq.(4), i.e. to find the orientation of the axes of the ellipsoid shown in Fig.1. Since this goal must be achieved within
an optical design program, we have chosen a technique based on local optimization. We have therefore transformed into
a computer algorithm a mathematical idea that is usually used to describe the rotation of axes (shown in Fig. 1) that
diagonalizes the matrix A10.

Consider around the local minimum M a hypersphere whose radius r = MQ is sufficiently small so that the
equimagnitude surfaces that intersect it are ellipsoids given by Eq. (3). (See Fig. 5.) We first compute the direction of
the eigenvector that has the smallest eigenvalue, i.e. the direction of the longest axis of the ellipsoids. Since smaller
ellipsoids have smaller values of f0, for the merit functions of the points P , P1 and P2 in Fig. 5 we can write
f(P2)>f(P1)>f(P) . Therefore, a local minimization of the merit function, constrained on the hypersphere of radius r, will
produce as a result one of the two points in which the inscribed ellipsoid (thick curve) touches the hypersphere. Each of
these two points can be used to define the direction MP of the eigenvector. In order to compute the remaining
eigenvectors, we use the fact that they are all orthogonal to each other. We will now use a coordinate system having its

origin in M. Thus, if P has the coordinates 1 1 1
1 2ˆ ˆ ˆ, ,... Nx x x , the other eigenvectors must be situated in the N-1 dimensional

hyperplane orthogonal to MP, which is given by
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Figure 5. Computation of the eigenvectors based on local minimization (see text).



(In two dimensions, Eq.(6) is the equation for the direction MQ in Fig.5.) Adding Eq.(6) as a second constraint and
reoptimizing along the hypersphere we obtain the direction of the second eigenvector. By adding for each newly found
eigenvector an additional constraint similar to Eq.(6) and reoptimizing, all eigenvectors are found one after the other.

In order to detect the saddle points that connect the local minimum M with neighboring local minima, we first define a
set of directions, each characterized by an unit direction vector s. For each such direction, we consider the set of
hyperplanes orthogonal to s

1 1 2 2ˆ ˆ ˆ... N Ns x s x s x t+ + + = (7)

where t gives the distance between the hyperplane and M along the normal that passes through M. For a given value of t

we compute the constrained minimum of f in the hyperplane (7). Let ( )ˆ tsx and ( )F ts be the position vector and the

value of f corresponding to this minimum, respectively. For a given direction, if we start from the position of M at t=0

and increase t gradually, at the beginning ( )F ts increases. A neighboring saddle point is detected when ( )F ts reaches

a maximum for some value tmax , provided that ( )ˆ tsx is continuous for 0 < t < tmax (i.e. no jumps have been observed

during the gradual increase of t). It is important to note that not all such searches lead to saddle points; some of them
will terminate in dead ends.

Since the equimagnitude ellipsoids in the immediate vicinity of the point M are often strongly elongated, a useful set of
search directions s can be determined on the basis of the eigenvectors computed at M. As will be shown in more detail
in a future paper, if we start with an uniformly distributed set of directions s (Fig. 6a), for most directions s the

corresponding vectors ( )ˆ tsx will then be concentrated in a narrow cone around the first eigenvector (Fig. 6b).

However, if the directions s are oriented along eigenvectors the algorithm escapes from this cone and can explore
different regions of the solution space. At present we use in our algorithm two searches in opposite directions for each
eigenvector, i.e. a total of 2N independent searches for each local minimum. For the global searches performed up to
now, this number of searches seemed to be sufficient. In fact, many saddle points have been detected several times.

a ) b)

Figure 6. a) Uniform angular spread of search directions s around a local minimum. b) The corresponding search

trajectories ( )ˆ tsx for small values of t in the case of elongated equimagnitude surfaces. The search trajectories are

oriented in the direction of the corresponding s only if s if oriented along eigenvectors (thick lines), otherwise they tend
to be concentrated in a narrow cone along the longest axis of the ellipsoid.



4. RESULTS

We have implemented the algorithm described in the preceding section in the macro language of the commercial optical
design program CODE V and have tested it in several simple cases. Figure 7 shows the results of our global search in
the case of a triplet where the optimization variables were the six curvatures of the surfaces. We have found 19 local
minima (drawn within thick-line boxes), connected via 23 saddle points (thin-line boxes). The first 17 of our local
minima are identical with the 17 local minima found with Global Synthesis (the global optimization algorithm of CODE
V). Our last two local minima, which have large values of the merit function, are not listed in the output of Global
Synthesis. Interestingly, the saddle-point configurations si-j can be viewed as intermediate stages in a continuous
transformation of the local minimum mi into the minimum mj.

For testing the reliability of our network detection, in this example we have chosen the specifications (distances
between surfaces, glass types) to be rigorously symmetric with respect to the aperture stop. For this purpose, the central
lens has been split by a fictitious stop surface (not shown in Fig.7). The image plane was placed at its paraxial position
and the position of the object plane was controlled such that the transverse magnification was kept equal to -1. Because
of an additional equality constraint (the distance between object and image was also kept constant) the search space was
effectively 5-dimensional. The merit function used was the default merit function of CODE V, for which the image
defects in Eq.(1) are transverse ray aberrations computed with respect to the chief ray.

As expected, the detected network is almost perfectly symmetric. With one exception, the saddle point s8-5, the
configurations in Fig.7 are either symmetric with respect to the stop (m9, s1-2 , and s19-18) or they have mirror images.
For clarity, the pairs in which one configuration is (almost) the mirror image of the other have been grouped together in
the same box. Moreover, with the exception of the two dashed links in the lower right part of Fig.7, the detected links
display the same symmetry: if a saddle point links two minima, then the mirror of the saddle point will link the mirrors
of the same minima. The minor deviations of the network from perfect symmetry are not surprising since the
aberrations that affect the ray tracing results perturb to some extend the symmetry between object and image. At this
early stage, we cannot guarantee that our algorithm has detected the entire network. However, the symmetry detected as
expected increases our confidence in the potential of this type of global optimization algorithms.

The best two local minima of this search, m1 and m2, have the well-known shape of the Cooke triplet. Interestingly, for
a numerical aperture of 0.055 (the value of this search), both are slightly asymmetric and form a mirror pair, whereas
the saddle point s1-2 between them is symmetric. However, if we increase the numerical aperture, beyond the value of
0.075 these two minima will merge into a single symmetric one.

5. CONCLUSIONS

We have examined the properties of the optimization solution space from what mathematicians might call a topological
perspective. Because this high-dimensional space is usually very complicated, it is unmanageable without focussing on
particular features. By analyzing the splitting or merging of the equimagnitude surfaces when the corresponding merit
function value changes, we have selected those features which are relevant for our present purpose and have ignored the
rest. Based on the idea that the local minima form a network, a new type of global optimization algorithm has been
proposed. Our simple but nontrivial example shows that algorithms based on this idea could in principle not only
reproduce the results of presently known global optimization algorithms, but also provide additional insight into the
topography of the merit function landscape.
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Figure 7. Network of the global search corresponding to the symmetric Cooke triplet
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