
January 15, 2004 / Vol. 29, No. 2 / OPTICS LETTERS 189
Networks of local minima in optical system optimization
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We discuss a surprising new feature of the merit function landscape in optical system design. When certain
conditions are satisfied, the local minima form a network in which all nodes are connected. Each link between
two neighboring minima contains a saddle point with a Morse index of 1. For a simple global optimization
search (the symmetric Cooke triplet), the network of the corresponding set of local minima is presented.
© 2004 Optical Society of America
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Global optimization methods are currently of major im-
portance in optical system design and in many other
fields in which multiple local minima can be found
during optimization.1 – 5 A limitation of these meth-
ods, however, is that they do not provide information
about the merit function topography near the individ-
ual local minima or in the space between them.

In this Letter we show that, when certain general
conditions are satisfied, the merit function landscape
has a remarkable property: The local minima then
form a network in which they are all connected by
links that contain a special type of saddle point. Al-
though our primary interest is optical system design,
we believe that the present results are of much broader
interest.

We consider an optimization problem with an arbi-
trary number N of continuous variables and a merit
function f that is defined as the rms of image defects,
computed with ray tracing. Each set of optimization
variables defines a point in an N-dimensional solution
space. A point in this space for which the gradient of
f vanishes is called a critical point.

An important characteristic of critical points
for which the Hessian of f (i.e., the matrix of the
second-order derivatives of f with respect to the
optimization variables) has a nonzero determinant is
the number of negative eigenvalues of the Hessian
(the so-called Morse, or Hessian, index).6 A negative
eigenvalue means that along the direction defined
by the corresponding eigenvector of the Hessian the
critical point is a maximum. Thus minima have
Morse index 0, maxima have Morse index N , and for
saddle points the Morse index has values between 1
and N 2 1.

As will be shown below, if we are interested in the
detection of local minima, the saddle points with a
Morse index of one (SPMI1) play a special role. For
the present purpose it is sufficient to keep in mind that
a SPMI1 is a maximum in one direction (the downward
direction) and a minimum in an N 2 1-dimensional hy-
perplane orthogonal to that direction. If, for instance,
N � 2, then every saddle point is a SPMI1. Intu-
itively, the downward direction of a SPMI1 is similar
to the downward direction of a two-dimensional saddle
point, and each of the N 2 1 upward directions is simi-
lar to the upward direction of a two-dimensional saddle
point.
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We consider the N-dimensional solution space to be
divided into infinitely thin sheets in which f is constant
(the equimagnitude surfaces). Note f irst that an equi-
magnitude surface (EMS) with some value of f � f0 of
the merit function encircles a region in the solution
space for which f , f0. If, for instance, f0 is the merit
function of a local minimum, then the EMS (or the part
of it situated near the minimum) reduces to one point,
the minimum itself. For slightly larger values of f0
(a part of) the EMS encircles a small ellipsoidal re-
gion around the local minimum. If the value of f0 in-
creases, then the encircled volume also increases.

We will show now in an intuitive way that the local
minima within an arbitrary EMS form a connected
network. Figure 1 shows two local minima, M1
and M2, in an N-dimensional solution space. We
assume the existence of an EMS with f0 � fa that
encircles both minima and has no critical points
on it, labeled a in the f igure. For a sufficiently
small value of f0 � fb , fa (for instance, for fb
slightly larger than the larger of the two merit
function values corresponding to the local minima)
the EMS consists of two separate parts, labeled b
in Fig. 1. In a merit function landscape free of
pathologies, for some value of fS with fb , fS , fa, we

Fig. 1. Two connected minima and a saddle point on the
link.
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encounter the limiting case when the two separate
parts of the EMS touch each other at one point S. We
now show that S is in fact a SPMI1. For fB � fB 0

slightly lower than fS , the corresponding EMS will
be split. Then let, B and B0 be the two points on the
separate parts of the EMS for which the length of seg-
ment BB0 is minimal (see the enlarged detail in Fig. 1).
Obviously, along line BB0 the point S is a maximum.
We now consider an EMS with a merit function of
fA � fA0 slightly higher than fS . Since this EMS
encircles the one with f0 � fS , any line perpendicular
to BB0 and passing through S will intersect the EMS
at two points, A and A0. Along AA0 point S is then
a minimum. Since this is valid for any choice of line
AA0 in an N 2 1 dimensional hyperplane orthogonal
to downward direction BB0, S is a minimum in N 2 1
directions and is thus a SPMI1. If we now choose
points B and B0 as starting points, local optimization
will generate two paths in the solution space that will
lead to the two minima. Together with the saddle
point, these two paths form the link between M1 and
M2 (the dotted line in the main part of Fig. 1).

Assume now that we have an EMS with some (large)
value of f0 � fa that encircles an arbitrary number
p of local minima and has no critical points on it (in
Fig. 2, where p � 3, this is the outermost contour.)
If we decrease f0, at some value of fS1 , fa the EMS
will split into two surfaces that will now encircle p1and
p 2 p1 local minima. For the same reason as above,
point S1 in Fig. 2 is also a SPMI1. By choosing two
points close to the SPMI1, one on each side along the
downward direction, and following the paths of local
optimizations started at these points, we obtain a link
between one local minimum in the group of p1 encir-
cled local minima and one in the group of p 2 p1 local
minima. By further decreasing f0, we obtain succes-
sive splits of the encircling surfaces. Each such split
generates an additional link between two local minima
situated in the two different groups resulting from the
split. When f0 has reached a value that is lower than
the merit function of the lowest SPMI1 (S2 in Fig. 2)
all the local minima encircled by the EMS with f0 � fa
are linked in a network by links that each contain
a SPMI1.

We have thus shown that the local minima encir-
cled by an arbitrary EMS (without critical points on
it) form a connected network. For our purposes it is
important to know whether, in typical situations oc-
curring during optical system optimization, we can al-
ways find such EMSs that encircle all local minima.
At the time of this writing, we have examined only a
limited number of situations, and further research is
certainly necessary. Our present results make us be-
lieve, however, either that this desirable property of
the landscape of f is satisfied automatically or that it
can be achieved by modifying the optimization problem
adequately (e.g., by using inequality constraints). It is
well known that outside some useful regions in the so-
lution space the optical system configurations tend to
suffer from ray failure because some rays either miss
surfaces or suffer from total internal ref lection. Close
to ray-failure situations, the incidence angles of those
rays at the critical surfaces are large; the aberrations
and the merit function of the given optical system con-
figuration then tend to be large. Therefore close to
the ray-failure borders we can expect in the solution
space an EMS with a large f0. The local minima en-
circled by these EMSs then form a network.

An algorithm that uses constrained local optimiza-
tion to detect the SPMI1 has been implemented in the
macro language of the commercial optical design pro-
gram CODE V.7 Saddle-point detection algorithms
that have certain similarities with the one developed
independently by us are used to study the energy
landscape of systems of many atoms.8,9 In the case
of a triplet in which the optimization variables were
the six curvatures of the surfaces, we found 23 SPMI1
(shown by thin-line boxes in Fig. 3). By following
the downward paths of local optimization started at
these points, we obtained 19 local minima (thick-line
boxes). The best two local minima, m1 and m2, have
the well-known shape of a Cooke triplet. The first 17
of our local minima are identical with the 17 local min-
ima listed in the output of Global Synthesis, the global
optimization algorithm of CODE V. Interestingly,
the saddle-point configurations si2j can be viewed as
intermediate stages in a continuous transformation of
local minimum mi into minimum mj .

We chose the specifications (distances between sur-
face and glass types) to be rigorously symmetrical with
respect to the aperture stop. For this purpose, the
central lens was split by a fictitious stop surface (not
shown in Fig. 3). The image plane was placed at its
paraxial position and the position of the object plane
was controlled such that the transverse magnification
was kept equal to 21. Because of an additional equal-
ity constraint (the distance between object and image
was also kept constant), the search space was effec-
tively f ive dimensional. The merit function used was
the default merit function of CODE V, for which the

Fig. 2. Three connected minima. The links (dotted
curves) are the paths of local optimization started close to
the saddle point on both sides along the downward direc-
tion. The EMS (continuous curves) have been obtained
from a two-dimensional cut through the f ive-dimensional
merit function landscape of a Cooke triplet global search.
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Fig. 3. Network of the global search corresponding to a
symmetric Cooke triplet.

image defects are transverse ray aberrations computed
with respect to the chief ray.

As expected, the detected network is almost per-
fectly symmetrical. With one exception, saddle point
s825 (linked to the corresponding local minima through
dashed–dotted lines), the configurations in Fig. 3 are
either symmetrical with respect to the stop or they
have counterparts that look like mirror images. For
clarity, the pairs in which one configuration is (al-
most) the mirror image of the other have been grouped
together in the same box. Moreover, with the excep-
tion of only two links (dashed line), the detected links
display the same symmetry: If a SPMI1 links two
minima, then its mirror links the mirrors of the same
minima. The minor deviations of the network from
perfect symmetry are not surprising since the sym-
metry between object and image is affected by aberra-
tions. Although we cannot be certain that the present
algorithm has detected the entire network, the symme-
try detected as expected increases our confidence in the
potential of our network idea.

Concluding, this simple but nontrivial example
shows that algorithms based on the idea that the local
minima form a network could in principle not only
reproduce the results of known global optimization
algorithms but also provide additional insight into
the topography of the merit function landscape. This
new insight could be useful in meeting the design
challenges encountered in high-quality optics for
lithography, microscopy, and space applications.
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