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Birefringence induced by spatial dispersion (BISD), also called intrinsic birefringence, can cause a

serious deterioration of the optical imaging quality of deep UV lithographic objectives at

wavelengths below 193 nm,

Recently the mathematical formalism for analyzing those aspects of the BISD effect that are

relevant for optical design has been published. In this paper we give an equivalent but simplified

derivation of these results. This mathematical formalism is then applied to optical system design

and a compensation strategy is discussed. An example of optical system is given where the phase

retardation caused by the BISD effect has been corrected.
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1. INTRODUCTION

The phenomenon of birefringence in certain types of crystals has been known for more than three

centuries. It was first discovered by Bartholinus, qualitatively explained by Huygens and

marvelously described in a qualitative way by Fresnel. A firm foundation for the phenomenon of

birefringence was obtained by applying Maxwell’s equations to crystalline media with specific

symmetry properties. In this classical description, cubic crystals do not show birefringence and,

indeed, for most purposes they can effectively be considered as being isotropic.

It was Lorentz who first suggested the presence of anisotropy introduced by spatial dispersion in

cubic crystals as early as 1878 1). This observation was made again 2) on the basis of a microscopic

investigation of quadripolar transitions in crystals, and on the basis of macroscopic electrodynamics

3). The detailed analysis of this problem has been carried out by Agranovich and Ginzburg 4). They

showed, for instance, that cubic crystals possess seven optical axes (the three main crystallographic

axes and the four body diagonals of the cube). In this respect cubic crystals can be called heptaxial.

A number of experimental and theoretical studies were carried out in the 1970’s on the

birefringence effect induced by spatial dispersion in semiconductors 4). Because of the very small

size of the effect and the absence of any practical applications these investigations have not been

done in much detail.

Recent publications by Burnett et al. 5,6) demonstrate the great practical importance of the

phenomenon. The birefringence induced by spatial dispersion has been measured and calculated for

CaF2 and BaF2 in the ultraviolet spectral range. It was shown that the magnitude of the BISD in

these cubic crystals is sufficiently large to cause serious problems when using CaF2 for precision

UV optical systems at wavelengths as short as 157 nm 6). The birefringence effect is extensively

described and quantified in these references. However some aspects would profit from a further
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analysis. In Section 2 of this paper we present a different theoretical approach to the BISD subject

which allows us to simplify the derivations and to obtain fully equivalent analytic expressions of the

final formulae for cubic crystals (Section 3). In the final fourth Section we present our calculation

method for the BISD and the compensation of its detrimental effect on the image quality in a

lithographic objective.

2. BIREFRINGENCE IN CRYSTALLINE MEDIA

We will use the macroscopic electrodynamic approach 4) to analyze birefringence in crystals. The

macroscopic Maxwell equations for the electromagnetic field quantities in a medium are written as

ext

ctc
jDB π41rot +

∂
∂=

extπρ4 div =D                 (1)

tc ∂
∂−= BE 1rot 

0 div =B .

Here E is the electric field strength, D and B are the electric and magnetic induction. The quantities

extj and extρ  are the external current and charge densities which are sources of the external

electromagnetic field. These equations are supplemented by the relation between the electric

induction D and the electric field E. This material equation can be written in the framework of

macroscopic electrodynamics in the following general form

�� ′′′−′−′′=
∞−

),(),(),( tEttdtdtD jij

t

i rrrrr ε (2)

where ),( rtijε  is the dielectric tensor of the medium, and the Einstein summation convention has

been used.
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Here we have used the principle of causality according to which the induction at time t is only

determined by the present field and the field at previous times tt ≤′ .

We Fourier transform eqs. (1) and (2) assuming that

kkr kr ddeEtE ti
ii  ),(),( )(

�
−= ωω ω (3)

For the other quantities we use the same notation as well. Then we obtain

( )),(),( kBkD ω
ω

ω ×−= ck , (4)

0),( =⋅ kωDk , (5)

( )),(),( kEkkB ω
ω

ω ×= c , (6)

0),( =⋅ kωBk , (7)

and

),(),(),( kkk ωωεω jiji ED = , (8)

where summation over the index j, appearing twice, is assumed.

We can also introduce the inverse dielectric function matrix ),(1 kωε −
ij and write

),(),(),( 1 kkk ωωεω jiji DE −= . (9)

Writing eqs. (4)-(7) we have used the fact that in our case external current and charges are absent.

The spatial dispersion is determined by the parameter ka  or by the somewhat more descriptive

parameter λa , where a is a characteristic dimension (the radius of "the region of influence", radius

of molecular action, etc). and λ is the length of the electromagnetic wave. In a condensed non-

metallic medium the radius a is about the order of the lattice constant. Therefore, the parameter

λa  is very small, even in the optical or ultraviolet range of the electromagnetic spectrum.

Eliminating the magnetic induction B from eqs. (4) - (7) we obtain the expression
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( )[ ] ( )[ ]EkkEEkkD ⋅⋅−=××−= 2
2

2

2

2

kcc
ωω

, (10)

and, substituting eq. (8) into (10), we find

2
2

2 2( , ) ( , ) 0i j
ij ij j

k k
k E

c k
ω ε ω δ ω
� �� �

− − =� �� �
	 
� �

k k . (11)

If we use the matrix ),(1 kωε −
ij  we obtain

0),(),(1
2

2
2

2

=�
�

�
�
�

�
�
�

	


�

� −− − kk ωωεδδω
jlj

li
ilij D

k
kk

k
c

. (12)

These homogeneous systems of algebraic equations have nontrivial solutions 0),( ≠kωE  and

0),( ≠kωD , only if the corresponding determinants vanish

0),( 2
2

2

2

=��
�

�
��
�

�
−−

k
kk

k
c

ji
ijij δωεω k ,  (13)

and

0),(1
2

2
2

2

=�
�

�
�
�

� −− − kωεδδω
lj

li
ilij k

kk
k

c
. (14)

The dispersion equations (13) and (14) give the relation between ω and k for the electromagnetic

normal waves (or eigenwaves) in a given medium for ( )l lω ω= k , where the subscript l corresponds

to the given normal wave. For these normal waves, we can write the wave vector k in the form

ssk ),(ωω n
c

= , (15)

where s is the unit vector in the direction of k and ),( sωn  is the corresponding refraction index.

The dispersion equation (13) can be conveniently written in the form

( ) ( )[ ] 0),(,),( 242 =+−−=�
�

�
�
�

�−− ijjiljillljiijjiijijjiij nssssnssn
c

ssn εεεεεεωωωεδω sss . (16)
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This is the fundamental equation of crystal optics. In classical crystal optics )(ωεε ijij =  and (16)

becomes quadratic with respect to 2n . This reduced form is frequently called Fresnel’s equation.

For our purpose, it is more convenient to investigate the dispersion equation (14) because we can

use the property that the electric induction D is always transverse for normal waves. It means that

we can choose a coordinate system whose z-axis is directed along s and then the vector D will have

only two components xD and yD . By setting 021 == ss  and 13 =s  the wave equation and the

dispersion equation have the following form

βαβα ε DDm 12 −= , (17)

( ) ( ) 0 21
12

1
22

1
11

21
22

1
11

412 =−++−=− −−−−−− εεεεεεδ αβαβ mmm (18)

where we introduced the notation

2
2

1 m
n

= ;   2 ,1 , =βα . (19)

The dispersion equation (18) has two roots for the quantity 2m

( ) ( )21
12

21
22

1
11

1
22

1
112

2,1 4
2
1

2
−−−

−−

−−±
+

= εεεεεm , (20)

and, consequently, we are led to two mutually orthogonal vectors 1D  and 2D . As it is well-known

4,7), the existence of two values of the refractive index n for a given direction of the wave vector k is

the origin of the birefringence effect. The dispersion equation (18) has a multiple root 2
2

2
1 mm =  if

( ) ( ) 04 21
12

21
22

1
11 =−− −−− εεε (21)

and the birefringence is absent in this case. Also it is well-known 4,7) that in the case of traditional

crystal optics, i.e. for )(ωεε ijij = , the multiple root for m exists for every direction of k only in the

case of cubic crystals. For all  other crystals with a lower symmetry, birefringence is absent only for
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the wave with the wave vector k oriented along the principal optical axis. For hexagonal, tetragonal

or trigonal crystals there is one such an axis and these crystals are called uniaxial. For the three

remaining crystal systems, namely the orthorhombic, monoclinic and triclinic ones, there are two

privileged normal wave directions for which there is no birefringence and the crystals are called

biaxial. As shown in what follows, the situation is more complicated when the spatial dispersion is

taken into account, i.e. if the dielectric function matrix depends on both the frequency ω and the

wave vector k.

3. SPATIAL DISPERSION OF CUBIC CRYSTALS

We first write the inverse dielectric matrix for cubic crystals in the case of small spatial dispersion

in the form

( ) ( ) mlijlmijijij kk)(, 11 ωβδωεωε += −− k , (22)

or as

( ) ( ) mlijlmijijij ssn
c

2
2

2
11 )(, ωωβδωεωε += −− k

. (23)

The fourth-rank tensor ijlmβ  has only three independent and non-zero components for cubic crystals

with symmetry classes O, Td and Oh 4, 8). These are

zzzzyyyyxxxx ββββ ===1 , (24)

yyzzxxyyzzxxzzyyyyxxxxzz βββββββ ======2 , (25)

zxzxyzyzxyxy ββββ ===3 . (26)

Using these expressions the matrix elements of 1−
ijε  can be written as

( )[ ]22
2

2
1

2
11 )( zyxxx sssn

c
++�

�

�
�
�

�+= −− ββωωεε  , (27)
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yxxy ssn
c 3

2
1  2 βωε �

�

�
�
�

�=− , (28)

( )[ ]2
1

22
2

2
11 )( yzxyy sssn

c
ββωωεε ++�

�

�
�
�

�+= −−  , (29)

zxxz ssn
c 3

2~
1  2 βωε �

�

�
�
�

�=−  , (30)

( )[ ]2
1

22
2

2
11 )( zyxzz sssn

c
ββωωεε ++�

�

�
�
�

�+= −−  , (31)

zyyz ssn
c 3

2
1  2 βωε �

�

�
�
�

�=− . (32)

The factor two in the expressions for 1−
xyε , 1−

xzε  and 1−
yzε  is due to the summation in (22). The

equations (22) – (32) allow us to write the expression for the inverse dielectric matrix in the form

jiijiijij ssn
c

sn
c

n
c

n
c 3

2
2

2
2

~
2

2

2

2
2

2

2
11 2)(),( βωδβωδβωωεωωε ++��

�

�
��
�

�
+= −− s , (33)

 where

321

~
2ββββ −−= . (34)

The first term in the expression (33) is the isotropic contribution, the second one is anisotropic, but

it is expressed in  terms of a diagonal matrix; the last term is purely longitudinal. If we rewrite the

wave equation (14)

( ) 0),(),(
),(

1
2 =�

�

�
�
�

�
−− − ss

s
n

c
Dn

c
ss

n jljliil
ij ωωωωεδ

ω
δ

, (35)

it follows after some simple algebra that the longitudinal part of 1−
ijε  disappears from this equation

due to the prefactor ( )liil ss−δ , because the multiplication of this prefactor with the longitudinal

part yields zero.
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We will solve eq. (35) with the aid of perturbation theory and rewrite this equation as

( ) jijjij DDLL δωρ ),(10 s=+  (36)

and

),()(),( 10 ss ωρωρωρ += ,   (37)

where

),(
1),( 2 s

s
ω

ωρ
n

= (38)

is the eigenvalue of this equation which should be calculated up to the first order perturbations

described by the perturbation operator L1. L1 has the form

( ) 3
~

2
2

2
2

~
2

2

2

1 ),(),( jiijiij ssn
c

sn
c

L βωωδβωω ss −= . (39)

In the framework of perturbation theory, we can change the value ),(2 sωn  in eq. (39) into )(2
0 ωn

defined by the zero-order approximation. This zero-order perturbation is defined by the equation

( ) 0
0

0
0 )( ijij DDL ωρ= , where (40)

( ) ( )jiijij ssn
c

L −��
�

�
��
�

�
+= − δβωωε 2

2
02

2
1

0 )( (41)

and, consequently, eq. (40) for the zero-order approximation can be written as

( ) 0
0

0
2

2
02

2
1 )()( ijjiij DDssn

c
ωρδβωωε =�

�

�
�
�

�
−��

�

	



�

�
+− . (42)

By using eq. (5) this equation reduces to the wave equation for isotropic media, which has the

multiple root for )(0 ωρ  equal to

2
2
02

2
1

2
0

0 )()(
)(

1)( βωωωε
ω

ωρ n
cn

+== − . (43)
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Moreover, in the framework of macroscopic electrodynamics we can neglect the second term in the

right part of (43) because there are no possible experiments which can help us to distinguish the

terms )(1 ωε −  and 2
2
02

2

)( βωω n
c

. It means that for the refraction index )(0 ωn  in the zero-order

approximation we can write

)()(2
0 ωεω =n , (44)

where

( ) 11 )()( −−= ωεωε . (45)

The existence of the multiple root of )(0 ωρ  in the zero-order approximation tells us that the system

of equations (36) and (37) has a degenerate kernel 9) and we should use for the calculation of the

first order correction to ),(1 sωρ a so-called secular equation. This equation will give also the two

correct values of 0 ( , ( , ))iD nω ω s�  resulting from the removing of the degeneracy due to the

perturbation operator L1. If we write the first order correction ),(1 sωρ  as

2
2

1 0 12( , ) ( ) ( )n
c
ωρ ω ω βρ=s s� � , (46)

the secular equation will have the form

( )2 3
1( ) ( ) ( )i ij i j j is s s e eδ ρ− =s s s� , (47)

where we introduced the unit vector e in the direction of 0 ( )D s� . The pair of eigenmodes

( )(1 se , )(2 se ) has been chosen in such a way that in this basis the 2×2 matrix associated to the

operator L1  becomes diagonal. Because the vector 0 ( )D s�  is orthogonal to the vector s, when the

matrix is computed, the contribution of the terms 3
i js s  vanishes and eq. (47) can be replaced by

2
1( ) ( ) ( )i i is e eρ=s s s� . (48)
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Because of its complexity, the computation has been done by using computer algebra software. The

two solutions for 1( )ρ s�  i.e. the diagonal element of the matrix mentioned above turn out to be the

roots of the quadratic equation

2 2 2 2 2 2 2 2 2 2
1 1( ) 2( ) ( ) 3 0x y x z y z x y zs s s s s s s s sρ ρ− + + + =s s� � . (49)

These solutions are

(1,2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 ( ) ( ) ( ) 3x y x z y z x y x z y z x y zs s s s s s s s s s s s s s sρ = + + ± + + −s� . (50)

Note that the equation for 1( )ρ s�  has only one solution for the seven directions of the propagation

vector s, mentioned above i. e. the three main crystallographic axes and the four body diagonals of

the cube.

We can also obtain the expression for the eigenmodes of eq. (48). The components of the

eigenmode )(2 se , which correspond to the eigenvalue (2)
1 ( )ρ s�  the one with minus sign in front of

square roote have the following form

( ) ( )
r

sssssss
sse zyxyxyx

yxz

2442222
22

2 2
1)(

+−+
++=s , (51)

( )
( )22

222

22 )()(
yxzx

xzy
zx ssss

rsss
ee

−
+−

= ss , (52)

( )
( )22

222

22 )()(
xyzy

yzx
zy ssss

rsss
ee

−
+−

= ss , (53)

where r is given by

2222222222 3)( zyxzyzxyx sssssssssr −++= . (54)

For certain directions s zero denominators appear and then these expressions cannot be used

directly. When eqs. (51)-(54) must be used for a direction which leads to zero denominators using a
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non-singular direction very close to the singular one gives sufficient accuracy for practical

purposes. Analytical expressions can also be derived for these special cases. For instance for 0>xs

and 0>ys , but xs  very small we obtain

z

x
z

zz

zx
y

z

z
x s

se
ss

sse
s
se

2
)(   ,

12
)(    ,)( 2222 =

−
=−= sss . (55)

The components of the eigenmode )(1 se  corresponding to the eigenvalue (1)
1 ( )ρ s�  can be obtained

from the equation

sss ×= )()( 21 ee . (56)

Note that our first order correction to the eigenvalue 1( )ρ s�  coincides with that obtained by Burnett

et al 6).  An alternative approach that leads to relations that are equivalent to eqs. (51-56) is

discussed in ref. 10.

If we define the variation of the birefringence effect with propagation direction according to eq.

(22) from ref. 6 as

(1) (2) 2 2 2 2 2 2 2 2 2 2
1 1 1( ) ( ) ( ) 2 ( ) 3x y x z y z x y zs s s s s s s s sρ ρ ρ∆ = − = + + −s s s� � � , (57)

this value will have the same sign for every direction. The origin for a possible change of the sign

of the birefringence variation shown in Fig. 6 of ref. 6 is related to the behavior of the eigenmodes

)(2,1 se . This fact can be easily understood from Fig. 1.

Here we show the behavior of the eigenmodes )(2,1 se  for two propagation directions in the diagonal

plane [ 101
−

] of the cubic cell containing the [001], [111] and [110] directions. We can see that the

eigenmode )(1 se  corresponding to the larger value of 1( )ρ s�  lies in the plane [ 101
−

] for the

directions above the axis [111]. The eigenmode )(2 se  is normal to this plane. The situation is
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reversed for the directions below the axis [111]. Here the eigenmode )(2 s′′e  lies in the plane [ 101
−

].

It means that, if we consider the difference of the refraction indices between one wave polarized in

the [ 101
−

] plane and on other normal to this plane, this difference will have opposite sign for

directions above and below the axis [111].

4. CONSEQUENCES FOR OPTICAL SYSTEM DESIGN

In optical system design, BISD leads to the appearance of multiple polarized rays during refraction.

There are two basic effects depending on crystal orientation, wavelength, thickness and shape of the

lens. The first BISD consequence is the optical path-length difference between the two orthogonally

polarized components corresponding to a ray. This path-length difference, resulting in a phase

retardation, can be visualized in pupil maps for arbitrary field points. An example is shown in Table

I for a one-lens case.

The second consequence of BISD is an angular difference in ray paths. In an optical system with N

components, for each incident ray on the first surface there are 2N outcoming rays at the image

plane. The bifurcation of the rays causes an angular difference in ray path between ordinary and

extraordinary rays after each refraction, which results in a ray deviation at the image plane. Thus

instead of one ray there is a full cone of outcoming rays and the opening angle of this cone can be

called the maximal angular deviation. The compensation of this effect requires additional

consideration and will not be considered in this paper.

The first issue in optical system design with BISD is the calculation of the effect itself. Only one

commercial optical design program (Code V,   Optical Research Associates) supports the

calculation of the effect within a given approximation and allows to analyze the image quality
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taking into account the phase retardation caused by BISD. (In the present version of this program

the ray bifurcation and its consequences on energy transmission are not included).

The second important design issue is the calculation speed. For an adequate estimation of BISD it is

necessary to trace through the system at least 50 pupil rays taking into account their polarization

properties (see Table II). For a lithographic lens with about 50 surfaces this requirement drastically

increases the time of image quality estimation.

The third issue is to identify a relevant characteristic measure of the image quality for BISD in

DUV systems. In optical design it is very convenient to define the influence of BISD on the image

quality by one number. We found that the standard deviation of the retardation (phase difference)

over the pupil is a good indicator for the BISD influence. This quantity shows a very good

correlation with the image quality loss due to the phase retardation. This is confirmed by the

calculation of BISD in optical systems with and without BISD compensation. An example for a

system with NA=0.75 is given in Table III. The value of the Strehl Ratio is computed by taking into

account the polarization of light and in the case of NA=0.75 this value cannot exceed 0.84844 even

for an ideal optical system. By computing the Strehl Ratio values with and without BISD we

observe that the standard deviation of the retardation adequately indicates the loss of image quality

caused by BISD. Therefore by taking the standard deviation of the retardation into the error

function we can optimize optical systems for improving the imaging quality.

A major obstacle for the BISD compensation is the possible effect of asymmetry of the pupil map

around center of the pupil. For preserving the symmetry only the three directions {001}, {110} and

{111} can be selected as an optical axis. The directions {001} and {110} have an advantage as

compared to {111} because around them the BISD effect hardly changes when ray parameters

change, but along {110} we have a maximum of the effect. From the point of view of crystal
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manufacturing the direction {111}is preferable because for this direction the residual stresses are

minimal. Generally it is possible to select an arbitrary direction {abc} as an optical axis but in that

case both the BISD compensation and the technological issues may be much more difficult.

The general strategy of the effect compensation is the following. It can be observed from Table I

that, if chosen as an optical axis, the direction {100} has a 4-fold (90°) angular symmetry and

{111} has 3-fold (120°) angular symmetry. It is thus possible to tune the individual components to

achieve an almost circular distribution of the retardation over the pupil. For this purpose, a

combination of lenses with orientations {001}-0° and {001}-45° or {111}-0° and {111}-60° can be

used. The angles indicate a rotation around the axis with respect to the drawings in Table I.  The

BISD compensation for off-axis points is more difficult, because the distribution of the

birefringence is not symmetric, but in general the behavior for such a field point is comparable to

that of the axial point. In all cases studied by us the compensation for the axial point helps to the

compensation for the off-axis points. For off-axis points it would be useful to have software support

for the arbitrary choice of the crystal orientation during optimization.

The known approach to BISD compensation consist of using combinations of optical components

with the optical axes along the crystal orientations {001} and {111}, which can be oriented at

different angles around the optical axis. A certain choice of the crystal orientations of the

components in the optical system allows to compensate significantly the total phase retardation,

which can then be further adjusted or nulled out with the available optimization tools.

The novelty of our approach is the compensation of the phase retardation with crystal orientation

{011} only. In this case we use the opposite orientation of the phase retardation for components

with crystal orientations {011}-0° and {011}-90°. Such an arrangement allows to compensate the

effect without or with minor additional optimization and does not break the geometrical aberration
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correction. An optical system compensated according to this approach is shown in Fig 2. The values

of Strehl Ratio for the system with and without compensation are given in Table III.

5. CONCLUSIONS

A simplified mathematical description of BISD has been given in a form that is suitable for optical

design. Analytic expressions for the BISD eigenmodes have been obtained.

The consequences of BISD in the optical design for DUV lithography corresponding have been

considered. A relevant indicator of the effect of BISD on image quality and an improved BISD

correction approach has been discussed.  An example of a high NA lithographic projection system

with a high degree of BISD correction has been presented.
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Figure captions

Fig. 1. The behavior of the eigenvectors in the [ 101
−

]-diagonal plane of the elementary cubic cell.

Fig 2. BISD compensation in a DUV lithographic system. This optical system has a working
wavelength of 157 nm, NA=0.75, image size 22×22 mm 11)
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TABLES

Table I. Directional dependence of the BISD of a single lens for the axial object point.
The symmetry axis of the lens is oriented along the crystal direction given in the first column. The

dark tone indicates regions with low phase retardation and light tone indicates areas with high phase
retardation

 Chosen optical
axis

The phase retardation
dependence over the

pupil

The projections of the two eigenvector
states on the pupil plane

{100}

{110}

{111}
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Table II. Example shows the dependence of the accuracy of BISD calculation on the number of rays

Number of
rays

5 13 24 49 89 481 973

Mean
retardation

154.32 149.68 151.17 148.95 151.54 151.04 151.11
Low
BISD standard

deviation
of retardation

11.174 10.717 12.075 12.235 13.546 14.136 14.103

Mean
retardation

28.176 86.253 76.489 88.437 82.043 85.119 84.729
High
BISD standard

deviation
of retardation

35.734 59.455 41.456 49.023 51.595 49.944 49.791
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Table III. Image quality in an optical system with and without BISD compensation

BISD uncompensated BISD compensation

Field,
mm

Strehl
Ratio
(in the

absence
of BISD)

Strehl
Ratio

mean
retardation,

degrees

standard
deviation of
retardation

Strehl
Ratio

mean
retardation,

degrees

standard
deviation of
retardation

0.0 0.811952 0.25678 108.241 40.2502 0.79837 46.2033 4.20398
5.0 0.841904 0.26579 108.028 40.3193 0.80797 44.2758 6.10463
10.0 0.839376 0.27746 107.105 40.5278 0.80280 38.4220 10.7555
14.0 0.836742 0.28396 105.950 40.6184 0.78340 31.5285 15.2787
16.4 0.811973 0.31566 105.552 40.5935 0.78448 27.3252 18.1214



22

[010]

[001]

[110]

[111]

φ

  θ

x

z

 y

s

[100]

 e2

   e1

s′
1e′ 2e′

Serebriakov, Maksimov, Bociort, Braat   Fig. 1.
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Serebriakov, Maksimov, Bociort, Braat  Fig. 2.


